Jump to main content
Jump to site search

Issue 9, 2019, Issue in Progress
Previous Article Next Article

Plasmonic nanomaterial structuring for SERS enhancement

Author affiliations


Unique structures of a gold island over nanospheres (AuIoN) featuring a three-dimensional (3D) nanostructure on a highly ordered two-dimensional (2D) array of nanospherical particles with different adhesion layers were fabricated as surface-enhanced Raman scattering (SERS) substrates. Ultra-thin Au was thermally evaporated onto PS nanospheres while aluminum oxide (Al2O3) was applied as an Au adhesion layer. The outcomes demonstrate that the higher metallic particle density and surface roughness supplied by the Al2O3 provided larger interatomic bonding than a conventional adhesion layer, the highly-dispersive Cr. Nanosphere lithography (NSL) to deposit templating particles as small as ∼100 nm successfully created a simple initial roughening process which in turn boosted the localized surface plasmon resonance (LSPR) efficiency. So far, PS template deposition of a size less than 200 nm has been challenging, but here, through the use of a simple solvent ratio adjustment on drop-casting NSL, the novelty of natural lithography with downscaled properties as an alternative to the complexity of photolithography which is mostly conducted in the strict ambience of a clean room, is presented. SERS activity was primarily attributed to the synergistic effect of collective LSPRs from the AuIoN structure reinforcing the electromagnetic field, particularly in the crevices of two neighboring AuIoNs, as simulated by FDTD (Finite-Difference Time-Domain) computation. An AuIoN fabricated by the integration of Al2O3 with thinner Au particles showed the optimum SERS activities with an improved enhancement factor of 1.51 × 106. Overall, a non-lithographic technique in tuning SERS hotspots and favorable characteristics of Al2O3 for ultra-thin Au adhesion support, which can potentially be used in the fabrication of various devices, was demonstrated.

Graphical abstract: Plasmonic nanomaterial structuring for SERS enhancement

Back to tab navigation

Article information

31 Dec 2018
24 Jan 2019
First published
08 Feb 2019

This article is Open Access

RSC Adv., 2019,9, 4982-4992
Article type

Plasmonic nanomaterial structuring for SERS enhancement

A. Purwidyantri, C. Hsu, C. Yang, B. A. Prabowo, Y. Tian and C. Lai, RSC Adv., 2019, 9, 4982
DOI: 10.1039/C8RA10656H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Social activity

Search articles by author