Issue 59, 2018, Issue in Progress

Molecular insights into competitive adsorption of CO2/CH4 mixture in shale nanopores

Abstract

In the present study, competitive adsorption behaviour of supercritical carbon dioxide and methane binary mixture in shale organic nanopores was investigated by using grand canonical Monte Carlo (GCMC) simulations. The model was firstly validated by comparing with experimental data and a satisfactory agreement was obtained. Then the effects of temperature (298–388 K), pressure (up to 60 MPa), pore size (1–4 nm) and moisture content (0–2.4 wt%) on competitive adsorption behaviour of the binary mixture were examined and discussed in depth. It is found that the adsorption capacity of carbon dioxide in shale organic nanopores is much higher than that of methane under various conditions. The mechanism of competitive adsorption was discussed in detail. In addition, the results show that a lower temperature is favorable to both the adsorption amount and selectivity of CO2/CH4 binary mixture in shale organic nanopores. However, an appropriate CO2 injection pressure should be considered to take into account the CO2 sequestration amount and the exploitation efficiency of shale gas. As for moisture content, different influences on CO2/CH4 adsorption selectivity have been observed at low and high moisture conditions. Therefore, different simulation technologies for shale gas production and CO2 sequestration should be applied depending on the actual moisture conditions of the shale reservoirs. It is expected that the findings in this work could be helpful to estimate and enhance shale gas resource recovery and also evaluate CO2 sequestration efficiency in shale reservoirs.

Graphical abstract: Molecular insights into competitive adsorption of CO2/CH4 mixture in shale nanopores

Article information

Article type
Paper
Submitted
07 Sep 2018
Accepted
27 Sep 2018
First published
03 Oct 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 33939-33946

Molecular insights into competitive adsorption of CO2/CH4 mixture in shale nanopores

W. Zhou, Z. Zhang, H. Wang, Y. Yan and X. Liu, RSC Adv., 2018, 8, 33939 DOI: 10.1039/C8RA07486K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements