Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 55, 2018, Issue in Progress
Previous Article Next Article

Direct laser-patterned ultra-wideband antennae with carbon nanotubes

Author affiliations

Abstract

Ultra-wideband (UWB), a radio transmission technology with wide bandwidth exceeding the minimum of 500 MHz or at least 20% of the center frequency, is a revolutionary approach for short-range high-bandwidth wireless communication. In this study, carbon nanotube (CNT) UWB antennas by direct laser-patterning technology have been successfully designed, fabricated and characterized. In contrast with traditional fabrication methods, the direct laser-patterning technology offers an exceptional potential for custom-designed, high-complexity and accuracy device fabrication. The “engraving” process on CNTs exposed to laser can be attributed to the bond breaking of C–C, evaporation of carbon atoms, and oxidation of CNTs by the oxygen molecules. Numerical analysis and experimental studies provide characteristics of CNT slot antennas with a wide impedance bandwidth (from 3.4 GHz to 14 GHz for S11 ≤ −10 dB), high average radiation efficiency (76%) and fractional bandwidth (121%) with small size of 30 × 30 mm2. The results indicate the advantages of laser-patterned UWB antennas based on carbon nanotubes, which paves the way for industrial applications, particularly in the world of consumer electronics.

Graphical abstract: Direct laser-patterned ultra-wideband antennae with carbon nanotubes

Back to tab navigation

Article information


Submitted
28 Aug 2018
Accepted
30 Aug 2018
First published
05 Sep 2018

This article is Open Access

RSC Adv., 2018,8, 31331-31336
Article type
Paper

Direct laser-patterned ultra-wideband antennae with carbon nanotubes

H. Qiu, H. Liu, X. Jia, X. Liu, Y. Li, J. Feng, H. Wei, Y. Yang and T. Ren, RSC Adv., 2018, 8, 31331
DOI: 10.1039/C8RA07173J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements