Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2018, Issue in Progress
Previous Article Next Article

Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance

Author affiliations

Abstract

During pretreatment of lignocellulosic biomass, toxic compounds were released and inhibited the growth and fermentation of microorganisms. Here the global transcriptional response of K. marxianus to multiple inhibitors including acetic acid, phenols, furfural and HMF, at 42 °C, was studied, via RNA-seq technology. Genes involved in the glycolysis pathway, fatty acid metabolism, ergosterol metabolism and vitamin B6 and B1 metabolic process were enriched in the down-regulated gene set, while genes involved in TCA cycle, respiratory chain, ROS detoxification and transporter coding genes were enriched in the up-regulated gene set in response to the multiple inhibitors stress. Further real time-PCR results with three single inhibitor stress conditions showed that different transporters responded quite differently to different inhibitor stress. Coenzyme assay results showed that the level of NAD+ was increased and both NADH/NAD+ and NADPH/NADP+ ratio decreased. Furthermore, genes involved with transcription factors related to carbohydrate metabolism, sulfur amino acids metabolism, lipid metabolism or those directly involved in the transcriptional process were significantly regulated. Though belonging to different GO categories or KEGG pathway, many differentially expressed genes were enriched in maintaining the redox balance, NAD(P)+/NAD(P)H homeostasis or NAD+ synthesis, energy production, and iron transportation or metabolism. These results suggest that engineering these aspects represents a possible strategy to develop more robust strains for industrial fermentation from cellulosic biomass.

Graphical abstract: Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance

Back to tab navigation

Supplementary files

Article information


Submitted
12 Jan 2018
Accepted
09 Apr 2018
First published
17 Apr 2018

This article is Open Access

RSC Adv., 2018,8, 14177-14192
Article type
Paper

Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance

D. Wang, D. Wu, X. Yang and J. Hong, RSC Adv., 2018, 8, 14177
DOI: 10.1039/C8RA00335A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements