Jump to main content
Jump to site search

Issue 4, 2018
Previous Article Next Article

Application of response surface methodology and green carbon dots as reducing agents in speciation of iron

Author affiliations

Abstract

Herein, for the first time, we used a green synthetic approach, via the hydrothermal treatment of grape and onion without any functionalization, to produce reducing carbon dots (CDs). The method has the advantages of low cost, easy operation and being environmentally friendly. The as-synthesized grape and onion CDs were characterized by UV-Vis spectrophotometry, spectrofluorimetry, FTIR spectroscopy and transmission electron microscopy (TEM). Interestingly, it was found that the synthesized CDs could reduce Fe3+ to Fe2+. Based on this finding, a method based on complexation with 1,10-phenanthroline was introduced for determination of Fe3+ and total iron in water samples. A response surface methodology was employed to explore the factors influencing the response, i.e. concentration of 1,10-phenanthroline and concentration of as-synthesized CDs. The proposed method provides a simple and sensitive colorimetric approach to detect Fe3+ over a wide linear range of 4.6–160 μM with a low detection limit of 0.1 μM. Moreover, for the first time, the reducing strength of CDs was estimated by the well-known Prussian blue assay.

Graphical abstract: Application of response surface methodology and green carbon dots as reducing agents in speciation of iron

Back to tab navigation

Supplementary files

Article information


Submitted
05 Nov 2017
Accepted
29 Dec 2017
First published
09 Jan 2018

This article is Open Access

RSC Adv., 2018,8, 2173-2180
Article type
Paper

Application of response surface methodology and green carbon dots as reducing agents in speciation of iron

M. Shariati-Rad, T. Mohseninasab and F. Parno, RSC Adv., 2018, 8, 2173
DOI: 10.1039/C7RA12139C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements