Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 79, 2017, Issue in Progress
Previous Article Next Article

Electrostatically driven scalable synthesis of MoS2–graphene hybrid films assisted by hydrophobins

Author affiliations

Abstract

Liquid processing of 2D crystals offers scalable strategies for the production of 2D materials. Herein, we produce the hybrids of MoS2/graphene, consisting of few-layered nanosheets of luminescent MoS2 and biofunctionalized few-layered graphene assisted by the Vmh2 hydrophobin, a self-assembling adhesive fungal protein, through a green route of production. The functionalization of the graphene flakes assisted by Vmh2 adds surface charge, which enables electrostatic interaction between MoS2 and graphene flakes, leading to the van der Waals coupling. The surface morphology of 2D material based films is analyzed through optical imaging, scanning and transmission electron microscopy. The produced dispersions of MoS2, bGr and the hybrid solutions, are investigated by electrophoretic mobility, UV-Vis, Raman and photoluminescence spectroscopy. Interestingly, the effect of van der Waals interactions between the layers of MoS2 and bGr crystals are evidenced through the significant upshift of 14 cm−1 in the G′ Raman peak of graphene and an upshift of 1.4 cm−1 of the A1g peak of MoS2. Due to the formation of heterostructures, significant quenching of the characteristic photoluminescence emitted from the monolayers of MoS2 was also observed, indicating the charge transfer process occurring between the crystal layers. This approach of scalable synthesis of 2D material based nano-bio hybrids offers economic and eco-friendly solutions to promote novel applications in biosensing and photodetection.

Graphical abstract: Electrostatically driven scalable synthesis of MoS2–graphene hybrid films assisted by hydrophobins

Back to tab navigation

Supplementary files

Article information


Submitted
05 Sep 2017
Accepted
19 Oct 2017
First published
27 Oct 2017

This article is Open Access

RSC Adv., 2017,7, 50166-50175
Article type
Paper

Electrostatically driven scalable synthesis of MoS2–graphene hybrid films assisted by hydrophobins

J. Kaur, A. Vergara, M. Rossi, A. M. Gravagnuolo, M. Valadan, F. Corrado, M. Conte, F. Gesuele, P. Giardina and C. Altucci, RSC Adv., 2017, 7, 50166
DOI: 10.1039/C7RA09878B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements