Issue 39, 2017, Issue in Progress

Effect of solvent polarity on the photophysical properties of chalcone derivatives

Abstract

The absorption and fluorescence characteristics of (E)-3-(furan-2-yl)-1-(4-nitrophenyl)prop-2-en-1-one (FNPO), (E)-1-(4-aminophenyl)-3-(furan-2-yl)prop-2-en-1-one (AFPO) and (E)-3-(furan-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one (FHPO) were recorded in eighteen different solvents with increasing polarities at room temperature. The solvatochromic effects on absorption and fluorescence spectra have shown bathochromic shifts from non-polar to polar solvents for the reported molecules due to intramolecular charge transfer (ICT) interactions. It has indicated a large difference in dipole moment between electronically ground and excited states and the molecules were found to be more stabilized in singlet excited state than the ground state. The ground and excited state dipole moments of FNPO, AFPO and FHPO were determined experimentally by solvatochromic shift method using Bilot–Kawski, Lippert–Mataga, Bakhshiev, Kawski–Chamma–Viallet and Reichardt's microscopic solvent polarity functions. HOMO–LUMO energy values of FNPO, AFPO and FHPO were determined using cyclic voltammetry and compared with those values obtained by TD-DFT (B3LYP/6-311G(d,p)) method.

Graphical abstract: Effect of solvent polarity on the photophysical properties of chalcone derivatives

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2017
Accepted
22 Apr 2017
First published
03 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 24204-24214

Effect of solvent polarity on the photophysical properties of chalcone derivatives

R. Kumari, A. Varghese, L. George and S. Y. N., RSC Adv., 2017, 7, 24204 DOI: 10.1039/C7RA01705G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements