Issue 114, 2016, Issue in Progress

Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures

Abstract

β-Poly(vinylidene fluoride) (PVDF) is of large technological relevance due to its piezoelectric, pyroelectric and/ferroelectric properties. In this way, a variety of methods have been developed to obtain such electroactive β-phase, being the addition of fillers one of the most popular, upscalable and innovative methods. The electrostatic interaction between negative charged fillers with the CH2 groups having a positive charge density has been the most widely accepted mechanism for the direct formation of polar β-phase on nanocomposites. Nevertheless some controversy remains in this matter as the dominating crystallization into the β-phase within PVDF is sometimes attributed to the interaction between the positively charged surfaces of the fillers and the CF2 dipoles in PVDF. In order to clarify such a controversial issue, this work uses two types of nanostructures, Fe3O4 nanorods and Fe3O4 nanoparticles, with distinct sizes and surface charges to study, isolate and evaluate the effects of the different ion–dipole interactions and shapes on the crystalline structures of PVDF. As a result it is shown that in the case of positive ion–CF2 dipole based β-phase nucleation, and beyond the effect of the intermolecular interactions, the rod-shape optimizes the crystallization in the electroactive conformation, thus promoting current development in PVDF-based electroactive devices.

Graphical abstract: Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures

Article information

Article type
Paper
Submitted
30 Sep 2016
Accepted
21 Nov 2016
First published
22 Nov 2016

RSC Adv., 2016,6, 113007-113015

Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures

M. S. Sebastian, A. Larrea, R. Gonçalves, T. Alejo, J. L. Vilas, V. Sebastian, P. Martins and S. Lanceros-Mendez, RSC Adv., 2016, 6, 113007 DOI: 10.1039/C6RA24356H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements