Issue 105, 2016

Anomalous red emission with competition and coexistence of defect and band edge emission in photo-electrochemically active (Zn0.97Ga0.03)(O0.95N0.05) solid solution

Abstract

Photo-electrochemically active nanostructured (Zn0.97Ga0.03)(O0.95N0.05) solid solution has been synthesized by a solution combustion technique for realizing photocatalytic activity under visible light. A competing free excitonic and defect bound emission is observed from the sample which was investigated by temperature dependent photoluminescence from 4 K to 300 K. The defect bound emission dominates at room temperature providing an anomalous enhanced red emission, not reported before. A broad visible emission confirms the introduction of new defect levels as an impact of solid solution formation as established later by valence band (VB) XPS spectra. VB XPS shows the top of the valence band has shifted without affecting the conduction band, thereby reducing effective band gap of the solid solution from 3.35 eV to 2.8 eV. Tuning of the bandgap is essential to facilitate its activity under visible light irradiation as demonstrated in our present work. The generation of charge carriers, their effective separation and reduced trap states has been demonstrated by photoelectrochemical measurements in order to confirm the potential of the sample for efficient photocatalytic activity. The present sample exhibits a low mean life time with reduced trap states as compared to some previously reported results.

Graphical abstract: Anomalous red emission with competition and coexistence of defect and band edge emission in photo-electrochemically active (Zn0.97Ga0.03)(O0.95N0.05) solid solution

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2016
Accepted
20 Oct 2016
First published
21 Oct 2016

RSC Adv., 2016,6, 103081-103087

Anomalous red emission with competition and coexistence of defect and band edge emission in photo-electrochemically active (Zn0.97Ga0.03)(O0.95N0.05) solid solution

S. S. Menon, S. Sen, P. Pramanik, A. Bhattacharyya, B. Gupta, B. Tiwari, K. Baskar and S. Singh, RSC Adv., 2016, 6, 103081 DOI: 10.1039/C6RA21078C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements