Issue 88, 2016

Excited-state proton transfer in 4-2′-hydroxyphneylpyridine: full-dimensional surface-hopping dynamics simulations

Abstract

Herein we have employed combined electronic structure calculations (CASSCF and CASPT2) and “on-the-fly” fewest switches surface-hopping dynamics simulations (OM2/MRCI) to systematically study the S1 excited-state intramolecular proton transfer (ESIPT) and decay dynamics of 4-(2′-hydroxyphenyl)pyridine. On the basis of the optimized minima, conical intersections, and minimum-energy intramolecular proton transfer paths, we found that the S1 ESIPT process is essentially barrierless and results in a transient S1 keto species with a large Stokes shift. This keto species can be further decayed to the S0 state via the nearby keto S1/S0 conical intersection that can be easily approached structurally and energetically. In comparison, the other enol S1/S0 conical intersections are mechanistically less important. On the dynamical side, we have estimated the ESIPT is ultrafast and is complete within on average 80 fs. In addition, we have found that 94% trajectories hop to the S0 state via the keto S1/S0 conical intersection; while, the remaining 6% jump to the S0 state via the enol S1/S0 conical intersections. On arrival of the S0 state, the keto species will return to the enol one by an efficient ground-state reverse hydrogen transfer reaction.

Graphical abstract: Excited-state proton transfer in 4-2′-hydroxyphneylpyridine: full-dimensional surface-hopping dynamics simulations

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2016
Accepted
01 Sep 2016
First published
02 Sep 2016

RSC Adv., 2016,6, 85574-85581

Excited-state proton transfer in 4-2′-hydroxyphneylpyridine: full-dimensional surface-hopping dynamics simulations

W. Guo, X. Liu, W. Chen and G. Cui, RSC Adv., 2016, 6, 85574 DOI: 10.1039/C6RA17827H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements