Issue 30, 2016

Fabrication of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes decorated with Ag–Au bimetallic nanoparticles with enhanced catalytic activity for the reduction of 4-nitrophenol

Abstract

Ag–Au bimetallic nanoparticles (NPs) are deposited on poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) nanotubes by a facile and effective co-reduction method, wherein the PZS nanotubes with abundant hydroxyl groups have been prepared via an in situ template approach. Upon varying the feeding amounts of the Ag and Au precursors, the bimetallic compositions of the PZS nanotubes can be readily tuned resulting in a series of bimetallic catalysts with different Ag to Au molar ratios, thus leading to the tunable catalytic properties. Characterization results show that the Ag–Au bimetallic nanoparticles with smaller size and good dispersibility are well anchored onto the surface of the PZS nanotubes. Furthermore, the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4 is applied as a model reaction to study the effect of different Ag-to-Au molar ratios on the catalytic capabilities of the resulting composites. It is found that the catalytic capability is remarkably enhanced when the Au content is increased. The maximum activity parameter value reaches 92.2 s−1 g−1, which is far higher than that of PZS nanotubes decorated with either Ag or Au nanoparticles alone.

Graphical abstract: Fabrication of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes decorated with Ag–Au bimetallic nanoparticles with enhanced catalytic activity for the reduction of 4-nitrophenol

Article information

Article type
Paper
Submitted
25 Jan 2016
Accepted
29 Feb 2016
First published
01 Mar 2016

RSC Adv., 2016,6, 24921-24928

Fabrication of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes decorated with Ag–Au bimetallic nanoparticles with enhanced catalytic activity for the reduction of 4-nitrophenol

Y. Yan, J. Fu, M. Wang, S. Liu, Q. Xin, Z. Chen and Q. Xu, RSC Adv., 2016, 6, 24921 DOI: 10.1039/C6RA02158A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements