Issue 118, 2015

Novel phosphorescent iridium(iii) complexes containing 2-thienyl quinazoline ligands: synthesis, photophysical properties and theoretical calculations

Abstract

The easy tailoring of organic ligands of iridium(III) complexes provides a facile way to tune their opto-electronic properties for applications in high efficiency phosphorescent light emitting diodes. Herein, a series of yellow and red emitting phosphorescent iridium complexes based on 2-thienyl quinazoline derivatives are successfully synthesized and systematically characterized with various opto-electronic properties. The X-ray crystal structures demonstrate that the iridium centers in the complexes with bulky substituents on the 4-position of quinazolyl rings prefer to chelate with the N atoms in the 1-position of quinazolyl rings. Both experiment and theoretical studies indicate that the steric hindrance along with the electron-donating effect of substituents on the C^N ligands enhances the emission quantum yields, accompanied by significant emission shifts. Two yellow phosphorescent iridium complexes (Ir2 and Ir3) are successfully designed and exhibit moderate emission efficiencies, through the incorporation of bulky ligands with strong electron-donating abilities (piperidine for Ir2 and 2,6-dimethyl-phenoxy for Ir3, respectively). The synergistic effect of electron structure and hindrance of ligand is believed to be a promising strategy for tuning the opto-electronic properties of iridium complexes.

Graphical abstract: Novel phosphorescent iridium(iii) complexes containing 2-thienyl quinazoline ligands: synthesis, photophysical properties and theoretical calculations

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2015
Accepted
04 Nov 2015
First published
09 Nov 2015

RSC Adv., 2015,5, 97841-97848

Novel phosphorescent iridium(III) complexes containing 2-thienyl quinazoline ligands: synthesis, photophysical properties and theoretical calculations

Q. Mei, J. Weng, Z. Xu, B. Tong, Q. Hua, Y. Shi, J. Song and W. Huang, RSC Adv., 2015, 5, 97841 DOI: 10.1039/C5RA17437F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements