Issue 96, 2014

The production of biobased nonanal by ozonolysis of fatty acids

Abstract

Ozonolysis has been proposed as a clean and efficient reaction for use in the production of biobased aldehydes from unsaturated plant oils that can directly replace similar petrochemical compounds. However, further oxidation of aldehydes to carboxylic acids can occur which reduces the yield and complicates aldehyde purification. In this work, the ozonolysis of free fatty acids in an aqueous medium was systematically studied with the objective of producing high yields of nonanal. A reductive/catalytic hydrogenation process was also used in order to reduce the ozonides and so increase the yield of aldehydes. The use of water as a co-solvent during the ozonolysis/hydrogenation processes was found to significantly reduce the formation of carboxylic acids compared to the use of organic solvents, described previously for the ozonolysis of oils and its derivatives. This can be attributed to the effective dilution and decomposition of peroxides formed in water, compared to the situation for organic solvents. A correlation between the ozonolysis time, ozone concentration and the aldehyde yields were observed. In particular, high ozone concentrations resulted in much faster production of aldehydes, so that under optimized conditions, nonanal production was achieved without excessive production of nonanoic acid. Various biobased aldehydes, which are used as key aroma ingredients and intermediates in flavor and fragrance formulations, can be prepared in a similar way by selection of other fatty acid feedstocks.

Graphical abstract: The production of biobased nonanal by ozonolysis of fatty acids

Article information

Article type
Paper
Submitted
31 Jul 2014
Accepted
09 Oct 2014
First published
09 Oct 2014

RSC Adv., 2014,4, 53617-53627

Author version available

The production of biobased nonanal by ozonolysis of fatty acids

T. S. Omonov, E. Kharraz, P. Foley and J. M. Curtis, RSC Adv., 2014, 4, 53617 DOI: 10.1039/C4RA07917E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements