Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 15, 2014
Previous Article Next Article

Electrophoretic deposition of TiO2 nanorods for low-temperature dye-sensitized solar cells

Author affiliations

Abstract

The fabrication of low-temperature photoanodes is essential for flexible dye-sensitized solar cells. Electrophoretic deposition (EPD) represents a potential alternative to form photoanodes at low temperature. To optimize the photoanodes fabricated by EPD, TiO2 nanorod/nanoparticle (labeled as NRP) structures were synthesized. The obtained NRPs have high surface charges and wide size distribution, making them suitable to form binder-free photoanodes with EPD. Compared with reference DSSCs produced with P25 (commercial TiO2 particles), NRP based DSSCs showed enhanced light-scattering property and decreased recombination. Further, under the same total time, the efficiencies of the devices obtained with multiple EPD are above 2.2 times those of one step devices. Without any calcination or compression, the best device (with multiple EPD and a thin layer of nanoparticles) gives a conversion efficiency of 4.35%, having a short circuit current density, open circuit voltage, and filling factor of 8.41 mA cm−2, 0.74 V and 69.75%, respectively.

Graphical abstract: Electrophoretic deposition of TiO2 nanorods for low-temperature dye-sensitized solar cells

Back to tab navigation

Article information


Submitted
04 Dec 2013
Accepted
09 Jan 2014
First published
10 Jan 2014

RSC Adv., 2014,4, 7805-7810
Article type
Paper

Electrophoretic deposition of TiO2 nanorods for low-temperature dye-sensitized solar cells

F. Shao, J. Sun, L. Gao, J. Chen and S. Yang, RSC Adv., 2014, 4, 7805
DOI: 10.1039/C3RA47286H

Social activity

Search articles by author

Spotlight

Advertisements