Issue 30, 2013

Photoinduced DNA cleavage by atomic oxygen precursors in aqueous solutions

Abstract

Reactive oxygen species are known to induce DNA strand cleavage and have been explored as treatments for cancer. The development of aqueous-soluble dibenzothiophene-S-oxide (DBTO) derivatives has made it possible to investigate the mechanism of DNA cleavage by these photoactivatable precursors of atomic oxygen. In addition to the release of atomic oxygen, DBTO can also undergo other processes such as α-cleavage. An objective of this work was to establish whether the extent of strand scission could be attributed to a direct reaction between atomic oxygen and DNA. To accomplish this aim, the extent of strand cleavage upon irradiation of three different DBTO derivatives was measured by the conversion of circular pUC19 plasmid (Form I) to nicked (Form II) as monitored by gel electrophoresis. The interaction of the sulfoxides with DNA was systematically studied by optical melt and fluorescence anisotropy experiments. Thiols are susceptible to rapid oxidation by atomic oxygen, and thus, glutathione was used as a ROS scavenger to determine if DNA cleavage was induced by the release of atomic oxygen. The results from these experiments indicated atomic oxygen was at least partially responsible for the observed strand scission.

Graphical abstract: Photoinduced DNA cleavage by atomic oxygen precursors in aqueous solutions

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2012
Accepted
10 May 2013
First published
10 May 2013

RSC Adv., 2013,3, 12390-12397

Photoinduced DNA cleavage by atomic oxygen precursors in aqueous solutions

J. Korang, I. Emahi, W. R. Grither, S. M. Baumann, D. A. Baum and R. D. McCulla, RSC Adv., 2013, 3, 12390 DOI: 10.1039/C3RA41597J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements