Issue 30, 2012

Facile synthesis of CuO nanorods with abundant adsorbed oxygen concomitant with high surface oxidation states for CO oxidation

Abstract

Oxygen adsorption materials play an important role in catalysis. However, the conventional catalytic mechanism of CO oxidation over copper oxide-based catalysts is based on lattice-oxygen oxidation processes, which neglects the significance of the oxidizability of the copper component and the adsorbed oxygen. Herein, we propose that poorly-crystallized CuO nanorods are capable of adsorbing abundant oxygen along with increasing the Cu oxidation states to close to 3+, meaning that CO catalytic oxidation occurs directly on the adsorbed oxygen and that Cu oxidation states do not fall to 1+ during catalytic reactions. The rate-controlled step is the surface oxidizability of the CuO nanorods, which increases with increasing temperature and oxidizability of the environment involved. These catalytic processes are distinctly different from the conventional case. The unique oxygen adsorption and catalytic properties of the CuO nanorods originate from the increasing trend in Cu oxidation state in the p-type CuO, enhanced by the defect structures and coarse surfaces of the sample. Such structure and morphology characteristics are closely related to the liquid membrane growing environment, which induces poor crystallization of the nanorods. The characterization methods include scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transformation infrared spectroscopy (FTIR).

Graphical abstract: Facile synthesis of CuO nanorods with abundant adsorbed oxygen concomitant with high surface oxidation states for CO oxidation

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2012
Accepted
27 Sep 2012
First published
01 Oct 2012

RSC Adv., 2012,2, 11520-11528

Facile synthesis of CuO nanorods with abundant adsorbed oxygen concomitant with high surface oxidation states for CO oxidation

K. Zhong, J. Xue, Y. Mao, C. Wang, T. Zhai, P. Liu, X. Xia, H. Li and Y. Tong, RSC Adv., 2012, 2, 11520 DOI: 10.1039/C2RA21149A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements