Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 1, 2016
Previous Article Next Article

Theoretical evaluation of lanthanide binding tags as biomolecular handles for the organization of single ion magnets and spin qubits

Author affiliations

Abstract

Lanthanoid complexes are amongst the most promising compounds both in single ion magnetism and as molecular spin qubits, but their organization remains an open problem. We propose to combine Lanthanide Binding Tags (LBTs) with recombinant proteins as a path for an extremely specific and spatially-resolved organisation of lanthanoid ions as spin qubits. We develop a new computational subroutine for the freely available code SIMPRE that allows an inexpensive estimate of quantum decoherence times and qubit–qubit interaction strengths. We use this subroutine to evaluate our proposal theoretically for 63 different systems. We evaluate their behavior as single ion magnets and estimate both decoherence caused by the nuclear spin bath and the interqubit interaction strength by dipolar coupling. We conclude that Dy3+ LBT complexes are expected to behave as SIMs, but Yb3+ derivatives should be better spin qubits.

Graphical abstract: Theoretical evaluation of lanthanide binding tags as biomolecular handles for the organization of single ion magnets and spin qubits

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jul 2015
Accepted
17 Oct 2015
First published
20 Oct 2015

Inorg. Chem. Front., 2016,3, 61-66
Article type
Research Article
Author version available

Theoretical evaluation of lanthanide binding tags as biomolecular handles for the organization of single ion magnets and spin qubits

L. E. Rosaleny and A. Gaita-Ariño, Inorg. Chem. Front., 2016, 3, 61
DOI: 10.1039/C5QI00127G

Social activity

Search articles by author

Spotlight

Advertisements