Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 11, 2015
Previous Article Next Article

Crystal facet tailoring arts in perovskite oxides

Author affiliations


Crystal facet engineering is an important strategy for fine-tuning the physical and chemical properties in many fields, which will provide an effective route to fundamentally understand the relationship between the surface structure and the electron state. Many researchers have worked on the technological performance improvement of noble metal nanoparticles and simple metal oxides by tailoring their crystal facets. Perovskite structure oxides are the most prominent mixed-oxide materials in the field of heterogeneous catalysis due to the acceptable catalytic activity and thermal stability. However, the utilization of perovskite oxides is still limited in comparison with noble metal catalysts because the most stable surface is usually terminated with non-catalytically active crystal facets. High-index facet tailoring may be an effective route to improve the activity of perovskite structure catalysts. So far, only several perovskite oxides have been reported on the crystal facet tailoring with well-defined polyhedral shapes. Herein, we review the recent progress in the facet tailoring arts in perovskite structure oxides. This review begins with a general introduction to facet related physical and chemical behavior and the potential facet-dependent applications. Then, the general principles of crystal growth and facet tailoring will be discussed. The principle for possible grown facets of perovskite structure oxides will be proposed. Various shape growth and facet tailoring of perovskite structure oxides will be reviewed in four parts: (i) tungsten and molybdenum trioxide (A0B+6O3); (ii) niobate and tantalite (A+1B+5O3); (iii) titanate and zirconate (A+2B+4O3); (iv) ferrite, chromite and manganite (A+3B+3O3), including mixed-valence state perovskite compounds. The facet tailoring mechanism in perovskite oxides will be discussed in the next section. Finally, an overview of the promising future of facet dependent applications will be given as a perspective outlook. Fundamental understanding of facet tailoring is expected to open up strategies for the development of highly efficient perovskite oxide materials.

Graphical abstract: Crystal facet tailoring arts in perovskite oxides

Back to tab navigation

Publication details

The article was received on 31 Aug 2015, accepted on 29 Sep 2015 and first published on 30 Sep 2015

Article type: Review Article
DOI: 10.1039/C5QI00168D
Inorg. Chem. Front., 2015,2, 965-981

  •   Request permissions

    Crystal facet tailoring arts in perovskite oxides

    K. Huang, L. Yuan and S. Feng, Inorg. Chem. Front., 2015, 2, 965
    DOI: 10.1039/C5QI00168D

Search articles by author