Jump to main content
Jump to site search

Issue 3, 2020
Previous Article Next Article

Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects

Author affiliations

Abstract

Postpolymerization modification is a powerful strategy to change the chemical functionality of pre-made polymers, but only limited approaches exist to modify functionality as well as the shape and behaviour of nano-particles. Herein, poly[poly(ethylene glycol) methyl ether methacrylate]-poly(2,3,4,5,6-pentafluorobenzyl methacrylate) nano-objects (pPEGMA-pPFBMA) prepared via RAFT dispersion polymerization with concurrent polymerization-induced self-assembly (PISA) in ethanol with either spherical or worm-shaped morphology were modified, post-synthesis, with a selection of 15 different thiols through thiol–para-fluoro substitution reactions in the nano-object cores. Depending on the choice of thiol, spherical nano-objects underwent an order–disorder transition to form unimers, increased in size, or underwent an order–order transition to form worm-shaped nano-objects. The core solvophobicity was found to be more important in driving a morphological transition than the modification efficiency, mass increase of the core block, or the glass transition temperature of the (partially) modified cores. These findings are relevant to the development of a “universal nanoparticle precursor” approach that allows the tuning of functionality, behaviour, size, and shape of a pre-made nano-object sample on demand.

Graphical abstract: Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects

Back to tab navigation

Supplementary files

Article information


Submitted
21 Oct 2019
Accepted
19 Nov 2019
First published
20 Nov 2019

Polym. Chem., 2020,11, 704-711
Article type
Paper

Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects

N. Busatto, J. L. Keddie and P. J. Roth, Polym. Chem., 2020, 11, 704
DOI: 10.1039/C9PY01585J

Social activity

Search articles by author

Spotlight

Advertisements