Issue 40, 2017

Hydrogels through emulsion templating: sequential polymerization and double networks

Abstract

Double-network (DN) hydrogels are a combination of two very different polymer networks. Here, porous hydrogels with DN structures were successfully synthesized in two sequential free-radical polymerization steps. The first network was templated within a high internal phase emulsion (HIPE) to yield a hydrogel polyHIPE (HG-PH). The double network hydrogel polyHIPEs (DN-PHs) combined a more rigid highly crosslinked, polyelectrolyte (poly(2-acrylamido-2-methylpropanesulfonic acid), PAMPS) first network with a more ductile, crosslinked, neutral (polyacrylamide, PAAm) second network. The DN-PHs were generated from the as-synthesized HG-PHs by imbibing an aqueous AAm solution followed by polymerization. HG-PHs with 70% porosity absorbed significantly more of the AAm solution than HG-PHs with 85% porosity. The density of the DN-PHs increased with increasing AAm concentration, resulting in an increase in the modulus and toughness of both the swollen and the dry DN-PHs. The DN-PHs based on a HG-PH with 85% porosity did not release their water and did not fail up to compressive strains of 70%, recovering their shapes upon the removal of stress. A comparison with inverse DN-PHs, synthesized using the reverse sequence of polymerization, demonstrated that the properties were strongly dependent both on the composition and on the sequence.

Graphical abstract: Hydrogels through emulsion templating: sequential polymerization and double networks

Article information

Article type
Paper
Submitted
03 Aug 2017
Accepted
22 Sep 2017
First published
22 Sep 2017

Polym. Chem., 2017,8, 6319-6328

Hydrogels through emulsion templating: sequential polymerization and double networks

S. Kovačič and M. S. Silverstein, Polym. Chem., 2017, 8, 6319 DOI: 10.1039/C7PY01305A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements