Issue 37, 2017

All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties

Abstract

All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight (Me) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures (Tgs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the Tgs of both segments were observed for the block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. The resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly(n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.

Graphical abstract: All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties

Article information

Article type
Paper
Submitted
22 Jul 2017
Accepted
25 Aug 2017
First published
25 Aug 2017

Polym. Chem., 2017,8, 5741-5748

All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties

W. Lu, Y. Wang, W. Wang, S. Cheng, J. Zhu, Y. Xu, K. Hong, N. Kang and J. Mays, Polym. Chem., 2017, 8, 5741 DOI: 10.1039/C7PY01225J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements