Issue 24, 2014

Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium

Abstract

Hydrophilic polymer brushes based on poly(ethylene glycol) methyl ether acrylate (P(PEGA454)) or poly(ethylene glycol) methyl ether methacrylate (P(PEGMA475)), both having a trithiocarbonate end group, were prepared in water–dioxane (9 : 1) at 44 °C via RAFT polymerization, and subsequently used in RAFT dispersion polymerization of styrene in isopropanol at 90 °C. RAFT reaction conditions were first optimized to prepare P(PEGA454) and P(PEGMA475) macro-RAFT agents at high monomer conversions (>90%) and very low fraction of dead chains (<1%). The macro-RAFT agents were then shown to have similar efficiency in terms of reinitiating and controlling the polymerization of styrene in dispersion polymerization. Both polymer brushes allowed the preparation of well-defined amphiphilic diblock copolymers (P(PEGA454)-b-PS and P(PEGMA475)-b-PS) which self-assemble in situ into nano-objects with various morphologies. Using relatively long chain P(PEGA454) or P(PEGMA475) macro-RAFT agents (DP ≈ 75) leads to the formation of near uniform spherical nano-particles with diameters ranging from 30 to 140 nm, depending on the targeted DP of the PS block. In contrast, TEM and DLS studies demonstrated that using a shorter P(PEGA454) or P(PEGMA475) macro-RAFT agent (DP ≈ 20) enables the formation of worm-like micelles, vesicles and large compound vesicle morphologies, in addition to spheres. Cryo-TEM was used to confirm polymerization induced morphology transition, rather than morphologies obtained via self-assembly driven by selective solvent or solvent evaporation during the preparation of samples for characterization.

Graphical abstract: Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2014
Accepted
28 Aug 2014
First published
28 Aug 2014

Polym. Chem., 2014,5, 6990-7003

Optimization of the RAFT polymerization conditions for the in situ formation of nano-objects via dispersion polymerization in alcoholic medium

W. Zhao, G. Gody, S. Dong, P. B. Zetterlund and S. Perrier, Polym. Chem., 2014, 5, 6990 DOI: 10.1039/C4PY00855C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements