Issue 14, 2014

An innovative synthesis approach toward the preparation of structurally defined multiresponsive polymer (co)networks

Abstract

A new and facile synthesis approach employed for the fabrication of multiresponsive polymer conetworks characterized by predefined architecture and composition is described for the first time. The presented methodology involves the crosslinking of well-defined 2-(dimethylamino)ethyl methacrylate (DMAEMA) homopolymers and polyDMAEMA-containing diblock and triblock copolymers prepared by Reversible Addition Fragmentation chain Transfer (RAFT) polymerization, using 1,2-bis-(2-iodoethoxy)ethane (BIEE) as a crosslinker. Unlike other controlled polymerization methods used for the synthesis of well-defined polymer structures, herein the crosslinking step is undemanding since no special synthesis requirements are necessary such as heat and inert conditions. Most importantly it enables the encapsulation of inorganic nanoparticulate systems within the 3-dimensional polymer structures, resulting in the generation of polymer-based nanocomposite (co)networks with structurally defined characteristics. More precisely, the BIEE-crosslinking step is carried out in the presence of pre-formed oleic acid coated magnetite (Fe3O4) nanoparticles. The swelling behavior of the resulting (co)networks is investigated in organic and aqueous media at different pHs. Moreover, the magnetic response of the Fe3O4-containing (co)networks is studied by means of vibrational sample magnetometry, demonstrating their superparamagnetic behavior at room temperature. This new approach may be easily expanded to generate structurally defined multiblock (and hence multifunctional) copolymer conetworks and organic–inorganic nanocomposites.

Graphical abstract: An innovative synthesis approach toward the preparation of structurally defined multiresponsive polymer (co)networks

Article information

Article type
Paper
Submitted
14 Feb 2014
Accepted
19 Mar 2014
First published
19 Mar 2014

Polym. Chem., 2014,5, 4365-4374

An innovative synthesis approach toward the preparation of structurally defined multiresponsive polymer (co)networks

M. Achilleos, M. Demetriou, O. Marinica, L. Vekas and T. Krasia-Christoforou, Polym. Chem., 2014, 5, 4365 DOI: 10.1039/C4PY00217B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements