Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 2, 2019
Previous Article Next Article

Copper(I)–polymers and their photoluminescence thermochromism properties

Author affiliations


Under hydro(solvo)thermal conditions, four organic bidentate bridging N,N′-donor ligands 1,3-bis(2-methylimidazol-1-yl)propane (L1), 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl (L2), 1,2-bis(2-methyl-1H-imidazol-1-ylmethyl)benzene (L3) and 5,6,7,8-tetrahydroquinoxaline (L4) were employed to react with CuBr/CuI, generating four 2-D layered copper(I)–polymer coordination polymer materials [Cu2Br2(L1)] 1, [CuI(L2)] 2, [CuI(L3)] 3 and [CuI(L4)0.5] 4. In 1–4, different Cu–X motifs are found: a cubic Cu4Br4 core in 1; a castellated Cu–I single chain in 2; a rhombic Cu2I2 core in 3; and a staircase-like Cu–I double chain in 4. The 2-D layer networks of 1–3 can all be simplified into a simple 44 topology (planar for 1 and 3; wave-like for 2), while the 2-D layer network of 4 has a 63 topology. The photoluminescence behaviors of 1–4 under a UV lamp suggest that 1 and 2 possess fluorescence thermochromism properties. Under the UV lamp, with the decrease in temperature, (i) 1 exhibits a yellow-to-red emission; (ii) 2 exhibits a yellow-to-green emission; (iii) 3 always emits green light; and (iv) 4 never emits light. These are further confirmed by their emission spectra. From 297 K to 77 K, the emission of 1 exhibits a large red shift from 561 nm to 623 nm; the emission of 2 exhibits a large blue shift from 571 nm to 515 nm; only a minor red shift is observed for the emission of 3; and no peaks appear in the emission spectra of 4. The crystal data of 1 and 2 at different temperatures have been collected for revealing the origination of their fluorescence thermochromism properties. Based on the above investigations, the effect of the rigidity/flexibility of the organic ligand on the fluorescence thermochromism properties of copper(I)–polymer coordination polymer materials is discussed. The quantum yields at 297 K and the photoluminescence lifetimes at 297 K and 77 K for 1–3 were also measured for better understanding their photoluminescence properties.

Graphical abstract: Copper(i)–polymers and their photoluminescence thermochromism properties

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Oct 2018, accepted on 20 Nov 2018 and first published on 21 Nov 2018

Article type: Paper
DOI: 10.1039/C8PP00474A
Photochem. Photobiol. Sci., 2019,18, 477-486

  •   Request permissions

    Copper(I)–polymers and their photoluminescence thermochromism properties

    R. Wang, X. Zhang, J. Yu and J. Xu, Photochem. Photobiol. Sci., 2019, 18, 477
    DOI: 10.1039/C8PP00474A

Search articles by author