Issue 2, 2008

Singlet molecular oxygen by direct excitation

Abstract

Direct excitation at 1064 nm and detection of singlet molecular oxygen at 1270 nm is made possible by the availability of powerful YAG-lasers and sensitive NIR photomultipliers. Singlet oxygen was generated in condensed phase at 77 K by direct excitation at 1064 nm (without the use of sensitizers). Several luminescing species were observed by time resolved luminescence spectroscopy and luminescence lifetime measurements, including the single molecule 1Δgand 1Σg+states as well as luminescence from the [1Δg]2 simultaneous transition. As an application we propose a novel method for obtaining quantitative non-intrusive mapping of the 2-D oxygen concentrations and pressure at cryogenic temperatures, which is of importance in aircraft design for high altitudes.

Graphical abstract: Singlet molecular oxygen by direct excitation

Article information

Article type
Paper
Submitted
17 Sep 2007
Accepted
14 Nov 2007
First published
30 Nov 2007

Photochem. Photobiol. Sci., 2008,7, 235-239

Singlet molecular oxygen by direct excitation

S. Jockusch, N. J. Turro, E. K. Thompson, M. Gouterman, J. B. Callis and G. E. Khalil, Photochem. Photobiol. Sci., 2008, 7, 235 DOI: 10.1039/B714286B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements