Issue 5, 2004

Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine

Abstract

The mechanistic aspects of Escherichia coli photodynamic inactivation (PDI) have been studied in bacteria expressing the reporter protein GFP, following transfection with wild type pGFP plasmid and treatment with the hydrophilic cationic sensitizer tetra-meso(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP). Cell survival and morphology during PDI were correlated with plasmid-GFP degradation in comparison to DNA and RNA strand-breaks, while photobleaching of the GFP chromophore was used to monitor protein photodamage. Singlet oxygen generated upon TMPyP photoactivation interacted with target nucleic acid polymers in a drug-and light-dose dependent manner. The hierarchy and cascade of the photodamage was in the order: genomic-DNA > total RNA > plasmid-DNA, as revealed by specific extraction and agarose electrophoresis. The notable resistance of the plasmid DNA in comparison to genomic DNA has implications for PDI of antibiotic-resistant bacteria. Re-growth of the treated cells in fresh medium showed structural features of an SOS response. Under these conditions, DNA repair machinery was initiated by typical alignment of DNA–protein co-aggregates accompanied by lateral assembly of ribosomes, apart from damaged DNA-arrays, as depicted by electron microscopy. GFP–TMPyP interactions were demonstrated by double green and red fluorescence on electrophoresis plates analyzed by spectral imaging. Photobleaching measurements revealed specific GFP photodamage directly related to PDI of the E. coli. The kinetics of both the GFP photobleaching and the K+ efflux, representing photodamage to cytosolic proteins and membrane damage, respectively, were found to be similar. The survival curves were correlated to chromosomal degradation and ultrastructural damage. We conclude that TMPyP-dependent PDI of E. coli is primarily dependent on genomic DNA photodamage rather than on protein or membrane malfunctions.

Graphical abstract: Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine

Article information

Article type
Paper
Submitted
01 Dec 2003
Accepted
05 Jan 2004
First published
12 Feb 2004

Photochem. Photobiol. Sci., 2004,3, 423-429

Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso(N-methylpyridyl)porphine

M. Salmon-Divon, Y. Nitzan and Z. Malik, Photochem. Photobiol. Sci., 2004, 3, 423 DOI: 10.1039/B315627N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements