Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2002

Tropylium cation capsule of hydrogen-bonded tetraurea calix[4]arene dimers

Author affiliations

Abstract

The interaction between tropylium salts and tetraurea calix[4]arene derivatives (such as 1 and 2) was studied in solution using 1D, 2D, diffusion, VT NMR and UV–visible spectroscopy. It was found that tropylium salts form charge transfer complexes with both the monomers and dimers of the tetraurea calix[4]arene derivatives depending on the experimental conditions. Compound 1 increases dramatically the solubility of tropylium salts in apolar solvents such as C2D4Cl2, CDCl3 and CD2Cl2 by forming the molecular capsule 1·C7H7+·1. In contrast to the benzene capsule of 1, in 1·C7H7+·1 the hydrogen bonds in the equatorial region that hold together the two parts of the dimer change their directionality faster than the NMR time scale (at 400 MHz) at temperatures higher than 298 K. Interestingly, the free energy barrier for this dynamic process at 298 K (ΔG298), depends on the nature of the counter-anion. Free energies of activation of 14.3 ± 0.2 kcal mol−1 and 12.6 ± 0.2 kcal mol−1 were found by total lineshape analysis for the dimeric capsules of C7H7+PF6 and C7H7+BF4, respectively. The affinity of the tropylium cation toward the dimer's cavity is much higher than that of neutral organic guests. Although exact quantitative values are not available due to the low solubility of tropylium salts in apolar solvents, a rough estimation in CD2Cl2 shows that the tropylium cation affinity is several orders of magnitude higher than that of benzene, which is known to be a good guest. These results show that once the steric requirements are met, electronic effects may serve as an additional driving force for the formation of such molecular capsules demonstrating the importance of cation–π interactions in such systems.

Graphical abstract: Tropylium cation capsule of hydrogen-bonded tetraurea calix[4]arene dimers

Article information


Submitted
05 Sep 2001
Accepted
22 Oct 2001
First published
26 Nov 2001

J. Chem. Soc., Perkin Trans. 2, 2002, 88-93
Article type
Paper

Tropylium cation capsule of hydrogen-bonded tetraurea calix[4]arene dimers

L. Frish, M. O. Vysotsky, S. E. Matthews, V. Böhmer and Y. Cohen, J. Chem. Soc., Perkin Trans. 2, 2002, 88 DOI: 10.1039/B108043A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Search articles by author

Spotlight

Advertisements