Volume 103, 2007

Organic photochemistry

Abstract

This review covers the literature concerning organic photochemistry published during 2005 and 2006. Due to the extensive breadth of publications within the period this review is selective rather than comprehensive. It is broadly split between the general application of photochemistry in organic synthesis and the use of photochemical processes to impart function to photoactive molecules as sensors, switches and other devices. Processes include photoinduced electron transfer (PET), fluorescence quenching, and photochromism. Light continues to play a role in the synthetic chemist’s repertoire and can alter the course of reactions providing different products, giving higher yields and increasing a degree of enantioselectivity. Functional molecules are at the basis of much of the recent developments in nanoscience. Light is an attractive means to impart functionality to such molecules and to form the basis of new photoactive materials. Energy transfer PET and photochromism allow a molecule to switch between states, conduct energy or electrons, or to respond to and sense changes in the external environment.

Article information

Article type
Review Article
First published
25 Jun 2007

Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2007,103, 370-391

Organic photochemistry

J. Bruce, Annu. Rep. Prog. Chem., Sect. B: Org. Chem., 2007, 103, 370 DOI: 10.1039/B617918P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements