Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 37, 2018
Previous Article Next Article

Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene

Author affiliations

Abstract

Squalene-hopene cyclase (SHC) catalyzes the conversion of acyclic squalene molecule into a 6,6,6,6,5-fused pentacyclic hopene and hopanol. SHC is also able to convert (3S)-2,3-oxidosqualene into 3β-hydroxyhopene and 3β-hydroxyhopanol and can generate 3α-hydroxyhopene and 3α-hydroxyhopanol from (3R)-2,3-oxidosqualene. Functional analyses of active site residues toward the squalene cyclization reaction have been extensively reported, but investigations of the cyclization reactions of (3R,S)-oxidosqualene by SHC have rarely been reported. The cyclization reactions of oxidosqualene with W169X, G600F/F601G and F601G/P602F were examined. The variants of the W169L generated new triterpene skeletons possessing a 7-oxabicyclo[2.2.1]heptane moiety (oxygen-bridged monocycle) with (1S,2S,4R)- and (1R,2S,4S)-stereochemistry, which were produced from (3R)- and (3S)-oxidosqualenes, respectively. The F601G/P602F double mutant also furnished a novel triterpene, named neogammacer-21(22)-en-3β-ol, consisting of a 6,6,6,6,6-fused pentacyclic system, in which Me-29 at C-22 of the gammacerane skeleton migrated to C-21. We propose to name this novel scaffold neogammacerane. The formation mechanisms of the enzymatic products from 2,3-oxidosqualene are discussed.

Graphical abstract: Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Aug 2018, accepted on 06 Sep 2018 and first published on 06 Sep 2018


Article type: Paper
DOI: 10.1039/C8OB02009D
Citation: Org. Biomol. Chem., 2018,16, 8365-8378

  •   Request permissions

    Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene

    Y. Fukuda, T. Watanabe and T. Hoshino, Org. Biomol. Chem., 2018, 16, 8365
    DOI: 10.1039/C8OB02009D

Search articles by author

Spotlight

Advertisements