Issue 24, 2015

Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring

Abstract

We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the “N” in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.

Graphical abstract: Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2015
Accepted
05 May 2015
First published
07 May 2015

Org. Biomol. Chem., 2015,13, 6742-6748

Author version available

Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring

Y. Cao, R. Pan, W. Xuan, Y. Wei, K. Liu, J. Zhou and W. Wang, Org. Biomol. Chem., 2015, 13, 6742 DOI: 10.1039/C5OB00500K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements