Issue 6, 2006

The ammonia-free partial reduction of substituted pyridinium salts

Abstract

This paper reports a study into the partial reduction of N-alkylpyridinium salts together with subsequent elaboration of the intermediates thus produced. Activation of a pyridinium salt by placing an ester group at C-2, allows the addition of two electrons to give a synthetically versatile enolate intermediate which can be trapped with a variety of electrophiles. Furthermore, the presence of a 4-methoxy substituent on the pyridine nucleus enhances the stability of the enolate reaction products, and hydrolysis in situ gives stable dihydropyridone derivatives in good yields. These versatile compounds are prepared in just three steps from picolinic acid and can be derivatised at any position on the ring, including nitrogen when a p-methoxybenzyl group is used as the N-activating group on the pyridinium salt. This publication describes our exploration of the optimum reducing conditions, the most appropriate N-alkyl protecting group, as well as the best position on the ring for the methoxy group. Electrochemical techniques which mimic the synthetic reducing conditions are utilised and they give clear support for our proposed mechanism of reduction in which there is a stepwise addition of two electrons to the heterocycle, mediated by di-tert-butylbiphenyl (DBB). Moreover, there is a correlation between the viability of reduction of a given heterocycle under synthetic conditions and its electrochemical response; this offers the potential for use of electrochemistry in predicting the outcome of such reactions.

Graphical abstract: The ammonia-free partial reduction of substituted pyridinium salts

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2005
Accepted
30 Jan 2006
First published
16 Feb 2006

Org. Biomol. Chem., 2006,4, 1071-1084

The ammonia-free partial reduction of substituted pyridinium salts

T. J. Donohoe, D. J. Johnson, L. H. Mace, R. E. Thomas, J. Y. K. Chiu, J. S. Rodrigues, R. G. Compton, C. E. Banks, P. Tomcik, M. J. Bamford and O. Ichihara, Org. Biomol. Chem., 2006, 4, 1071 DOI: 10.1039/B517462G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements