Issue 28, 2021

Surface chemistry in calcium capped carbon quantum dots

Abstract

Colloidal carbon quantum dots (C-dots) have attracted a lot of attention because of their excellent optical properties for various types of applications. Due to the complicated structure of C-dots, the photoluminescence (PL) mechanism of C-dots is still unclear. In particular, it is still a big challenge to understand well the surface chemistry of C-dots. In this work, we used a vacuum-heating approach to produce high-quality C-dots. With different purification procedures, the surface chemistry of C-dots can be well-controlled. Removal of Ca2+ by Na2CO3 led to the disappearance of the absorption at 405 nm and a decrease of the quantum yield. In addition, the Na2CO3 treated C-dots exhibited an excitation-dependent PL behavior. These results confirmed that Ca2+ can interact with the surface functional group of C[double bond, length as m-dash]O of the C-dots, forming a stable structure surrounding the C-dot core, which contributed to a high quantum yield (QY) of 65%, excitation-independent PL behavior and absorption at 405 nm. Furthermore, the PL of the C-dots is strongly dependent on the pH, indicating that the Ca2+ capped C-dots could be used as pH indicators. Our finding provides clear evidence for the surface-chemistry dependent PL behavior of C-dots.

Graphical abstract: Surface chemistry in calcium capped carbon quantum dots

Supplementary files

Article information

Article type
Communication
Submitted
30 Apr 2021
Accepted
11 Jun 2021
First published
11 Jun 2021

Nanoscale, 2021,13, 12149-12156

Surface chemistry in calcium capped carbon quantum dots

S. Ren, B. Liu, G. Han, H. Zhao and Y. Zhang, Nanoscale, 2021, 13, 12149 DOI: 10.1039/D1NR02763H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements