Jump to main content
Jump to site search

Issue 14, 2021
Previous Article Next Article

Conductive electrodes of metallic-organic compound CH3CuS nanowires for all-solid-state flexible supercapacitors

Author affiliations

Abstract

Development of wearable electronics puts forward higher requirements for flexible energy storage devices. Lighter and thinner electrodes with high conductivity are one of the key factors to meet this demand. Herein, a conductive paper-based electrode, assembled from metallic-organic compound CH3CuS nanowires prepared by a one-step thermal solution process, is reported. By using the conductive electrodes of CH3CuS nanowires, the fabricated all-solid-state supercapacitor device delivers an excellent electrochemical performance: an areal capacitance of 90.5 μF cm−2 at a current density of 0.5 mA cm−2, an energy density of 5.2 μW h cm−2, and 98% retention of initial capacitance after undergoing 10 000 cycles. In particular, the fabricated all-solid-state supercapacitor device can work normally under a bent state. The no-additive, cost-effective, and eco-friendly paper-based electrodes present a potential application prospect in the field of flexible energy storage devices.

Graphical abstract: Conductive electrodes of metallic-organic compound CH3CuS nanowires for all-solid-state flexible supercapacitors

Back to tab navigation

Supplementary files

Article information


Submitted
28 Jan 2021
Accepted
06 Mar 2021
First published
08 Mar 2021

Nanoscale, 2021,13, 6921-6926
Article type
Paper

Conductive electrodes of metallic-organic compound CH3CuS nanowires for all-solid-state flexible supercapacitors

X. Wang, Y. Lu, H. Zhao, Y. Sun and R. Wang, Nanoscale, 2021, 13, 6921
DOI: 10.1039/D1NR00593F

Social activity

Search articles by author

Spotlight

Advertisements