Issue 30, 2020

Superior to graphene: super-anticorrosive natural mica nanosheets

Abstract

Graphene has been generally considered to be the most ideal anticorrosive material based on its extraordinary impermeability, but tends in practical applications to promote metal corrosion because of its inherently high electrical conductivity. Mica nanosheets (MNSs), in contrast, display excellent electrical insulation properties, as well as excellent temperature stability and chemical durability, and show tremendous potential for protecting metals, and hence are a promising substitute for graphene. To date, however, there have been no reports about MNS-based anticorrosive coatings, since it is much more difficult to exfoliate high-quality MNSs than other layered materials. In this work, high-concentration (4.3 mg ml−1) ultrathin MNS (1–5 layers) dispersions were synthesized based on a facile and efficient hydrothermal exfoliation approach. Epoxy (EP) coatings were filled with the as-obtained MNSs to enhance the anticorrosion performance of the coatings, and their corrosion behaviors were studied systemically through a series of measurements. With the addition of only 0.4 wt% MNSs, the corrosion rate was observed to be reduced 6500 fold, and the coating impedance increased by four orders of magnitude compared with the blank EP coating. We believe that this method opens a novel avenue for developing high-performance anticorrosive coatings to replace graphene materials for metal protection.

Graphical abstract: Superior to graphene: super-anticorrosive natural mica nanosheets

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2020
Accepted
14 Jul 2020
First published
15 Jul 2020

Nanoscale, 2020,12, 16253-16261

Superior to graphene: super-anticorrosive natural mica nanosheets

J. Ding, H. Zhao and H. Yu, Nanoscale, 2020, 12, 16253 DOI: 10.1039/D0NR05040G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements