Jump to main content
Jump to site search

Issue 30, 2020
Previous Article Next Article

Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery

Author affiliations

Abstract

A novel insertable and pseudocapacitive Li+ ion material for highly ordered layered montmorillonite/carbon is explored in the present study. The commercially available protonated montmorillonite and 3,3′-diaminobenzidine act as starting materials to synthesize the layered material via hydrothermal intercalation, oxidative polymerization and carbonization. This method of preparing montmorillonite/carbon nanocomposite exhibits several advantages. To be specific, raw materials are low cost and naturally abundant; the montmorillonite can undergo proton exchange easily to form a permutable proton-type material, and the protons in the layered nanocomposite can be directly substituted by the polymerizable molecules (e.g., 3,3′-diaminobenzidine). Accordingly, a sheet-like montmorillonite/carbon layered nanocomposite is achieved with the carbon stacking on the montmorillonite substrate for the intercalation behavior. As revealed from the electrochemical results, montmorillonite/carbon nanocomposite can deliver a high reversible capacity of 1432 mA h g−1 at 50 mA g−1 and superior rate capacity of 920 mA h g−1 at 10 000 mA g−1 for the lithium ion battery. Furthermore, the full cell with LiFePO4 as cathode and montmorillonite/carbon as anode maintains 94% capacity retention over 50 cycles as well as high coulombic efficiency.

Graphical abstract: Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery

Back to tab navigation

Supplementary files

Article information


Submitted
23 May 2020
Accepted
14 Jul 2020
First published
15 Jul 2020

Nanoscale, 2020,12, 16262-16269
Article type
Paper

Controllable growth of carbon nanosheets in the montmorillonite interlayers for high-rate and stable anode in lithium ion battery

M. Chen, W. Fu, Y. Hu, M. Chen, Y. Chiou, H. Lin, M. Zhang and Z. Shen, Nanoscale, 2020, 12, 16262
DOI: 10.1039/D0NR03962D

Social activity

Search articles by author

Spotlight

Advertisements