Jump to main content
Jump to site search

Issue 14, 2020
Previous Article Next Article

In situ formation of H-bonding imidazole chains in break-junction experiments

Author affiliations

Abstract

As a small molecule possessing both strong H-bond donor and acceptor functions, 1H-imidazole can participate in extensive homo- or heteromolecular H-bonding networks. These properties are important in Nature, as imidazole moieties are incorporated in many biologically-relevant compounds. Imidazole also finds applications ranging from corrosion inhibition to fire retardants and photography. We have found a peculiar behaviour of imidazole during scanning tunnelling microscopy-break junction (STM-BJ) experiments, in which oligomeric chains connect the two electrodes and allow efficient charge transport. We attributed this behaviour to the formation of hydrogen-bonding networks, as no evidence of such behaviour was found in 1-methylimidazole (incapable of participating in intramolecular hydrogen bonding). The results are supported by DFT calculations, which confirmed our hypothesis. These findings pave the road to the use of hydrogen-bonding networks for the fabrication of dynamic junctions based on supramolecular interactions.

Graphical abstract: In situ formation of H-bonding imidazole chains in break-junction experiments

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jan 2020
Accepted
18 Feb 2020
First published
31 Mar 2020

This article is Open Access

Nanoscale, 2020,12, 7914-7920
Article type
Paper

In situ formation of H-bonding imidazole chains in break-junction experiments

C. Wu, A. Alqahtani, S. Sangtarash, A. Vezzoli, H. Sadeghi, C. M. Robertson, C. Cai, C. J. Lambert, S. J. Higgins and R. J. Nichols, Nanoscale, 2020, 12, 7914
DOI: 10.1039/D0NR00630K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements