Issue 18, 2020

A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction

Abstract

The development of low-cost and highly efficient materials for the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is an attractive and challenging topic in chemistry. In this study, the electrocatalytic performance of a series of transition metal (TM) atoms supported on MoS2 nanosheets (TM@MoS2) was systematically investigated using density functional theory (DFT) calculations. It was found that Re supported on MoS2 (Re@MoS2) has the best NRR catalytic activity with a limiting potential of −0.43 V, along with high selectivity over the competing hydrogen evolution reaction (HER). Moreover, the ab initio molecular dynamics (AIMD) simulations at 500 K and density of states (DOS) calculations indicated the high thermodynamic stability and excellent electrical conductivity of Re@MoS2. A linear trend between several parameters of single atom catalysts (SACs) and the adsorption Gibbs free energy change of the NH species (ΔG*NH) was observed, indicating the later as a simple descriptor for the facilitated screening of novel SACs. These results pave the way for exploring novel, highly efficient electrocatalysts for the electrochemical NRR under ambient conditions.

Graphical abstract: A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2020
Accepted
25 Mar 2020
First published
26 Mar 2020

Nanoscale, 2020,12, 10035-10043

A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction

X. Zhai, L. Li, X. Liu, Y. Li, J. Yang, D. Yang, J. Zhang, H. Yan and G. Ge, Nanoscale, 2020, 12, 10035 DOI: 10.1039/D0NR00030B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements