Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2020
Previous Article Next Article

Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Author affiliations

Abstract

Two-dimensional materials are ideal platforms for intriguing physics and optoelectronic applications because of their ultrathin thicknesses and excellent properties in optics and electronics. Further studies on enhancing the interaction between light and two-dimensional materials by combining metallic nanostructures have generated broad interests in recent years, such as enhanced photoluminescence, strong coupling and functional optoelectronics. In this work, an ultrathin circular polarimeter consisting of chiral plasmonic metasurface and monolayer semiconductor is proposed to detect light with different circular polarization within a compact device. A designed chiral plasmonic metasurface with sub-wavelength thickness is integrated with monolayer MoSe2, and the circular-polarization-dependent photocurrent responses of right and left circularly polarized light for both left- and right-handed metasurfaces are experimentally demonstrated. The photoresponse circular dichroism is also obtained, which further indicates the remarkable performance of the proposed device in detecting and distinguishing circularly polarized light. This design offers a great potential to realize multifunctional measurements in an ultrathin and ultracompact two-dimensional device for future integrated optics and optoelectronic applications with circularly polarized light.

Graphical abstract: Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Back to tab navigation

Supplementary files

Article information


Submitted
22 Dec 2019
Accepted
21 Feb 2020
First published
24 Feb 2020

Nanoscale, 2020,12, 5906-5913
Article type
Paper

Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2

Q. Jiang, B. Du, M. Jiang, D. Liu, Z. Liu, B. Li, Z. Liu, F. Lin, X. Zhu and Z. Fang, Nanoscale, 2020, 12, 5906
DOI: 10.1039/C9NR10768A

Social activity

Search articles by author

Spotlight

Advertisements