Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2020
Previous Article Next Article

InTeI: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility

Author affiliations

Abstract

Recently, stable 2D wide-bandgap semiconductors with excellent electronic and photoelectronic properties have attracted much scientific and technological interest. In this study, we predict a novel InTeI monolayer which has a wide bandgap of 2.735 eV and a anisotropic electron mobility as high as 12 137.80 cm2 V−1 s−1 based on first-principles calculations. With an exfoliating energy lower than that of monolayer phosphorene, it is feasible to synthesize the 2D InTeI monolayer through mechanical exfoliation from their 3D bulk crystals. Remarkably, the monolayer InTeI achieves the indirect-to-direct bandgap transition under a small in-plane uniaxial strain, while a quasi-direct bandgap can be achieved in the InTeI nanosheets with elevated thickness. The InTeI monolayer and nanosheets have suitable band alignments in the visible-light excitation region. In addition, our theoretical simulations determine that 2D InTeI materials exhibit more excellent oxidation resistance than black phosphorene. The results not only identify a novel class of 2D wide-bandgap semiconductors but also demonstrate their potential applications in nanoelectronics and optoelectronics.

Graphical abstract: InTeI: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility

Back to tab navigation

Supplementary files

Article information


Submitted
16 Dec 2019
Accepted
23 Feb 2020
First published
24 Feb 2020

Nanoscale, 2020,12, 5888-5897
Article type
Paper

InTeI: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility

S. Jiang, J. Li, W. Chen, H. Yin, G. Zheng and Y. Wang, Nanoscale, 2020, 12, 5888
DOI: 10.1039/C9NR10619G

Social activity

Search articles by author

Spotlight

Advertisements