Jump to main content
Jump to site search

Issue 19, 2020
Previous Article Next Article

Release of graphene-related materials from epoxy-based composites: characterization, quantification and hazard assessment in vitro

Author affiliations

Abstract

Due to their mechanical strength, thermal stability and electrical conductivity, graphene-related materials (GRMs) have been extensively explored for various applications. Moreover, GRMs have been studied and applied as fillers in polymer composite manufacturing to enhance the polymer performance. With the foreseen growth in GRM production, occupational and consumer exposure is inevitable, thus raising concerns for potential health risks. Therefore, this study aims (1) to characterize aerosol particles released after mechanical abrasion on GRM-reinforced epoxy composites, (2) to quantify the amounts of protruding and free-standing GRMs in the abraded particles and (3) to assess the potential effects of the pristine GRMs as well as the abraded particles on human macrophages differentiated from the THP-1 cell line in vitro. GRMs used in this study included graphene nanoplatelets (GNPs), graphene oxide (GO), and reduced graphene oxide (rGO). All types of pristine GRMs tested induced a dose-dependent increase in reactive oxygen species formation, but a decrease in cell viability was only detected for large GNPs at high concentrations (20 and 40 μg mL−1). The particle modes measured using a scanning mobility particle sizer (SMPS) were 300–400 nm and using an aerodynamic particle sizer (APS) were between 2–3 μm, indicating the release of respirable particles. A significant fraction (51% to 92%) of the GRMs embedded in the epoxy composites was released in the form of free-standing or protruding GRMs in the abraded particles. The abraded particles did not induce any acute cytotoxic effects.

Graphical abstract: Release of graphene-related materials from epoxy-based composites: characterization, quantification and hazard assessment in vitro

Back to tab navigation

Supplementary files

Article information


Submitted
03 Dec 2019
Accepted
28 Apr 2020
First published
28 Apr 2020

This article is Open Access

Nanoscale, 2020,12, 10703-10722
Article type
Paper

Release of graphene-related materials from epoxy-based composites: characterization, quantification and hazard assessment in vitro

W. Netkueakul, D. Korejwo, T. Hammer, S. Chortarea, P. Rupper, O. Braun, M. Calame, B. Rothen-Rutishauser, T. Buerki-Thurnherr, P. Wick and J. Wang, Nanoscale, 2020, 12, 10703
DOI: 10.1039/C9NR10245K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements