Issue 6, 2020

FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation

Abstract

As a rate-determining step, electrocatalytic water oxidation acts a pivotal role in the water splitting process. As a consequence, it is of great significance to explore low-cost, efficient and durable electrocatalysts for the oxygen evolution reaction (OER) to promote electrocatalytic splitting water. Herein, for the first time, FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT matrix materials (FNM/NPCNT) are synthesized via a facile solid-phase grinding of the precursor, composed of nickel hexacyanoferrate/phosphomolybdic acid/CNT, and subsequently pyrolyzing under nitrogen atmosphere without any further post-processing. Due to its significant enhancement of the charge transfer efficiency and prevention of the metallic-based catalysts from being corroded, the as-prepared FNM/NPCNT hybrid electrocatalyst shows a high OER activity with a low overpotential of 282 mV vs. RHE at 10 mA cm−2 and a small Tafel slope of 46.2 mV dec−1 in an alkaline electrolyte. Moreover, the as-prepared FNM/NPCNT hybrid delivers a large mass activity of 327.6 A g−1 at the potential of 1.7 V and excellent stability (more than 20 h). This study opens up a new approach to design and synthesize non-precious transition metal-based composites immobilized N, P co-doped CNT materials as OER catalysts with high efficiency and long-term stability for promoting water splitting.

Graphical abstract: FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2019
Accepted
13 Jan 2020
First published
13 Jan 2020

Nanoscale, 2020,12, 3777-3786

FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation

X. Zhang, Y. Chen, M. Chen, B. Wang, B. Yu, X. Wang, W. Zhang and D. Yang, Nanoscale, 2020, 12, 3777 DOI: 10.1039/C9NR09460A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements