Issue 38, 2019

Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation

Abstract

Biomaterial topography-based strategies are regarded as an effective way to regulate the osteoimmune environment which plays an indispensable role in the bone regeneration process. The rapid development of manufacture techniques makes it possible to investigate the cell–topography interactions by preparing various micro and nano-topographical surfaces on biomaterials. Still, it is a challenge to prepare well-defined micro/nano hierarchical structures of bioceramics due to the inherent brittleness of ceramic materials. Also, the correlation between osteoimmunomodulation initiated by micro/nano hierarchical topographies and the tissue regeneration outcomes is unclear. In this study, we prepared well-defined micro/nano hierarchical structures on hydroxyapatite (HA) bioceramics through the combination of the photolithography and hydrothermal techniques. Three different microscale circular patterns (4 μm, 12 μm and 36 μm) and nanotopographies (nanoneedle, nanosheet and nanorod) were fabricated by changing the size of the mask and the condition of the hydrothermal reaction. The macrophage responses on the nanoneedle structures with different micropatterns were investigated and the micro/nano hierarchical structures with appropriate pattern sizes could either promote or alleviate the macrophage polarization, which further affected the outcomes of the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) and angiogenic activity of human umbilical vein endothelial cells (HUVECs). Our study demonstrated that osteoimmunomodulation could be manipulated via tuning the micro/nano hierarchical structures, which could lead to a new strategy for the development of bone biomaterials with favorable osteoimmunomodulatory properties.

Graphical abstract: Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2019
Accepted
01 Sep 2019
First published
02 Sep 2019

Nanoscale, 2019,11, 17699-17708

Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation

C. Yang, C. Zhao, X. Wang, M. Shi, Y. Zhu, L. Jing, C. Wu and J. Chang, Nanoscale, 2019, 11, 17699 DOI: 10.1039/C9NR05730G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements