Issue 38, 2019

Electronic stripes and transport properties in borophene heterostructures

Abstract

We performed a theoretical investigation of the structural and electronic properties of (i) pristine and (ii) superlattice structures of borophene. In (i), by combining first-principles calculations, based on the density functional theory (DFT), and simulations of the X-ray Absorption Near-Edge Structure (XANES) spectra we present a comprehensive picture connecting the atomic arrangement of borophene and the X-ray absorption spectra. Once we characterized the electronic properties of the pristine systems, we next examined the electronic confinement effects in 2D borophene superlattices (BSLs) [(ii)]. Here, the BSL structures were made by attaching laterally two different structural phases of borophene. The energetic stability and the electronic properties of these BSLs were examined based on total energy DFT calculations. We find a highly anisotropic electronic structure, characterized by the electronic confinement effects, giving rise to “electronic stripes”, and metallic channels ruled by the superlattices. Combining DFT and the Landauer–Büttiker formalism, we investigated the electronic transport properties in BSLs. Our results of the transmission probability reveal that the electronic transport is ruled by π or a combination of π and σ transmission channels, depending on the atomic arrangement and periodicity of the superlattices. Finally, we show that there is a huge magnification of the directional dependence of the electronic transport properties in BSLs, in comparison with the pristine borophene phase. These findings indicate that BSLs are quite interesting systems in order to design conductive nanoribbons on a 2D platform.

Graphical abstract: Electronic stripes and transport properties in borophene heterostructures

Article information

Article type
Paper
Submitted
21 Jun 2019
Accepted
07 Sep 2019
First published
11 Sep 2019

Nanoscale, 2019,11, 17894-17903

Electronic stripes and transport properties in borophene heterostructures

G. H. Silvestre, W. L. Scopel and R. H. Miwa, Nanoscale, 2019, 11, 17894 DOI: 10.1039/C9NR05279H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements