Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2019
Previous Article Next Article

Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature

Author affiliations

Abstract

Highly oriented pyrolytic graphite (HOPG) is an inert substrate with a structural honeycomb lattice, well suited for the growth of a two-dimensional (2D) silicene layer. It was reported that when Si atoms are deposited on the HOPG surface at room temperature, they arrange into two configurations: silicene nanosheets and three-dimensional clusters. In this work we demonstrate, by using scanning tunneling microscopy (STM) and Raman spectroscopy, that a third configuration stabilizes in the form of Si 2D nanosheets intercalated below the first top layer of carbon atoms. The Raman spectra reveal a structure located at 538 cm−1 which we ascribe to the presence of sp2 Si hybridization. Moreover, the silicon deposition induces several modifications in the graphite D and G Raman modes, which we interpret as experimental evidence of the intercalation of the silicene nanosheets. The Si atom intercalation at room temperature takes place at the HOPG step edges and it detaches only the outermost graphite layer inducing a strong tensile strain mainly concentrated on the edges of the silicene nanosheets. Theoretical calculations of the structure and energetic viability of the silicene nanosheets and of the strain distribution on the outermost graphite layer and its influence on the Raman resonances support the STM and Raman observations.

Graphical abstract: Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature

Back to tab navigation

Supplementary files

Article information


Submitted
11 Jan 2019
Accepted
04 Mar 2019
First published
06 Mar 2019

Nanoscale, 2019,11, 6145-6152
Article type
Paper

Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature

I. Kupchak, F. Fabbri, M. De Crescenzi, M. Scarselli, M. Salvato, T. Delise, I. Berbezier, O. Pulci and P. Castrucci, Nanoscale, 2019, 11, 6145
DOI: 10.1039/C9NR00343F

Social activity

Search articles by author

Spotlight

Advertisements