Issue 13, 2019

Cu2S nanosheets for ultrashort pulse generation in the near-infrared region

Abstract

2D metal chalcogenide materials have received enormous attention due to their extraordinary bio-chemical, electronic, magnetic, thermal and optical properties. Compared with the typical two-dimensional transition metal dichalcogenides (TMDs) and topological insulators, cuprous sulfide (Cu2S) has very different two-dimensional lattice structures, along with excellent electro-catalysis and high conductivity. However, the nonlinear optical properties of Cu2S have never been studied until now. Here, the nonlinear photonics characteristics of Cu2S and its application in ultrafast lasers have been systematically studied for the first time. Through optical deposition of Cu2S nanosheets on a tapered fiber, the nonlinear optical properties of Cu2S nanosheets are measured through the interaction with the evanescent field. The results indicate that superior nonlinear saturable absorption properties with a modulation depth of 0.51% are achieved. An erbium-doped fiber (EDF) laser is constructed to verify the performance of the Cu2S saturable absorber (SA). The results show that an output pulse with 8.06 MHz repetition rate, 1.04 ps pulse duration, 1530.4 nm central wavelength and 3.1 nm spectral width without an obvious Kelly sideband is obtained. Considering the diversity of the metal chalcogenide family, various engineering applications may be developed from the nonlinear saturable absorption characteristics of Cu2S, including optical fiber communication/sensing, precision optical metrology, material processing and nonlinear optics.

Graphical abstract: Cu2S nanosheets for ultrashort pulse generation in the near-infrared region

Article information

Article type
Paper
Submitted
03 Jan 2019
Accepted
25 Feb 2019
First published
26 Feb 2019

Nanoscale, 2019,11, 6045-6051

Cu2S nanosheets for ultrashort pulse generation in the near-infrared region

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang and J. Liu, Nanoscale, 2019, 11, 6045 DOI: 10.1039/C9NR00080A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements