Jump to main content
Jump to site search

Issue 14, 2019
Previous Article Next Article

Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-nanodot-supported silver nanoparticles: an insight into characteristic distance

Author affiliations

Abstract

Hybrid nanostructures comprising conjugated polymers (CPs) and plasmonic metals show excellent performance in light harvesting. However, the energy transfer mechanism of the CP film to nearby metal nanoparticles, especially knowledge of the characteristic distance, is still unclear. Here, quenching of the emission of a CP film in proximity to a monolayer of graphene-nanodot-supported silver nanoparticles (GND-Ag NPs) is investigated. Uniform Ag NPs with D = 3.2 nm were grown on GNDs in situ under mild light irradiation, and a series of bilayer structures of GND-Ag NPs/CPs were constructed by spin-coating blue, green and red light-emitting poly(9,9-dioctylfluorene) (PFO), poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV),respectively, on top of the GND-Ag NP plane. The spacer distance was controlled by the layers of assembled polyelectrolytes. Both steady and transient photoluminescence (PL) spectra showed emission quenching of the bilayer structures, providing the maximum efficiency of 99% for the F8BT films. The surface density of GND-Ag NPs and the spacer distance-dependent PL quenching data were analyzed within the plasmonic resonant energy transfer model, and the extracted characteristic distances are 6 nm, 3 nm and 10 nm for the PFO, F8BT and MEH-PPV systems, respectively. Current-sensing atomic force microscopy shows that the GND-Ag NPs/F8BT film exhibits enhanced electrical conductivity. These results are believed to be important for the development of plasmonic enhanced polymer photovoltaics and photocatalysis.

Graphical abstract: Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-nanodot-supported silver nanoparticles: an insight into characteristic distance

Back to tab navigation

Supplementary files

Article information


Submitted
27 Nov 2018
Accepted
07 Mar 2019
First published
09 Mar 2019

Nanoscale, 2019,11, 6737-6746
Article type
Paper

Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-nanodot-supported silver nanoparticles: an insight into characteristic distance

Y. Wang, H. Li, W. Zhu, F. He, Y. Huang, R. Chong, D. Kou, W. Zhang, X. Meng and X. Fang, Nanoscale, 2019, 11, 6737
DOI: 10.1039/C8NR09576K

Social activity

Search articles by author

Spotlight

Advertisements