Issue 1, 2019

Superior oxygen electrocatalysts derived from predesigned covalent organic polymers for zinc–air flow batteries

Abstract

Covalent organic polymers (COPs) as emerging porous materials with ultrahigh hydrothermal stability and well-defined and adjustable architectures have aroused great interest in the electrochemical field. Here, we reported a rational design approach for the preparation of a bifunctional electrocatalyst with the assistance of a predesigned bimetallic covalent organic polymer. With the predesigned nitrogen position and structural features of COP materials, the obtained CCOPTDP–FeNi–SiO2 catalyst affords a remarkable bifunctional performance with a positive half-wave potential (0.89 V vs. reversible hydrogen electrode: RHE, superior to the benchmark Pt/C) for ORR activity, and a low overpotential (0.31 V better than the benchmark IrO2) at 10 mA cm−2 for OER activity in alkaline solution. The potential gap between E1/2 and Ej=10 reaches 0.650 V, in line with that observed in the current state-of-the-art bifunctional oxygen electrode materials. Moreover, a homemade rechargeable Zn–air flow battery using the CCOPTDP–FeNi–SiO2 catalyst as an air cathode exhibits an almost twofold power density (112.8 vs. 64.8 mW cm−2) and a lower charge–discharge voltage gap, compared with a commercialized noble Pt/C + IrO2/C-driven Zn–air flow battery. More importantly, the CCOPTDP–FeNi–SiO2-driven battery maintains a better cycling stability compared to a noble metal-driven battery without performance decay. Accordingly, this work will open up new ways for fabricating practical oxygen electrodes for, but not limited to, metal air based battery applications.

Graphical abstract: Superior oxygen electrocatalysts derived from predesigned covalent organic polymers for zinc–air flow batteries

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2018
Accepted
14 Nov 2018
First published
15 Nov 2018

Nanoscale, 2019,11, 211-218

Superior oxygen electrocatalysts derived from predesigned covalent organic polymers for zinc–air flow batteries

J. Guo, T. Li, Q. Wang, N. Zhang, Y. Cheng and Z. Xiang, Nanoscale, 2019, 11, 211 DOI: 10.1039/C8NR08330D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements