Issue 47, 2018

Terahertz phase jumps for ultra-sensitive graphene plasmon sensing

Abstract

Phase behavior of the reflected terahertz radiation (THz) under surface plasmon resonance (SPR) supported by doped graphene has been comprehensively investigated via theoretical analysis with simulation verifications. For a TM-polarized wave, the dependence of the phase on the angle of incidence has a region with an abrupt jump-like change. We found in particular that the resonance phase dependence would change from step-like contour to Fano lineshape when the system passed through the optimum SPR conditions (i.e., R = 0) in terahertz regime. Monitoring the transformation could provide ultrahigh-sensitive label-free detection of biomolecules. Importantly, the characteristic of phase jumps as a readout response to achieve refractive index sensing that outperforms traditional terahertz-amplitude-based attenuated total reflection (ATR) spectroscopy is valuable. The results demonstrated a high figure of merit (FOM) of up to 171, based on the terahertz phase information. Moreover, the sensing range could be tuned by changing the surface conductivity of graphene via high doping levels or with few-layer graphene. These terahertz phase response characteristics of graphene plasmon are promising for tunable ultra-sensitivity (bio)chemical sensing applications.

Graphical abstract: Terahertz phase jumps for ultra-sensitive graphene plasmon sensing

Article information

Article type
Paper
Submitted
26 Oct 2018
Accepted
11 Nov 2018
First published
13 Nov 2018

Nanoscale, 2018,10, 22466-22473

Terahertz phase jumps for ultra-sensitive graphene plasmon sensing

Y. Huang, S. Zhong, Y. Shen, Y. Yu and D. Cui, Nanoscale, 2018, 10, 22466 DOI: 10.1039/C8NR08672A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements