Jump to main content
Jump to site search

Issue 37, 2018
Previous Article Next Article

The Auger process in multilayer WSe2 crystals

Author affiliations

Abstract

Multilayer WSe2 with a larger optical density of states and absorbance is regarded as a better candidate than its monolayer counterpart for next generation optoelectronic devices, however insight into carrier dynamics is still lacking. Herein, we experimentally observed an anomalous PL quenching with decreasing temperature for multilayer WSe2. At a low temperature (77 K), the Auger processes govern carrier recombination in multilayer WSe2, which are induced by a phonon bottleneck effect and strong photon absorption, and lead to PL quenching. From transient absorption spectroscopy, two distinct Auger processes are observed: a fast one (1–2 ps) and a slow one (>190 ps), which are caused by two different deep midgap defect-levels in WSe2. Based on the Auger recombination model, these two Auger rates are quantitatively estimated at ∼6.69 (±0.05) × 10−2 and 1.22 (±0.04) × 10−3 cm2 s−1, respectively. Our current observations provide an important supplement for optimizing the optical and electric behaviors in multilayer WSe2 based devices.

Graphical abstract: The Auger process in multilayer WSe2 crystals

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 Mar 2018, accepted on 29 May 2018 and first published on 30 May 2018


Article type: Paper
DOI: 10.1039/C8NR02567C
Nanoscale, 2018,10, 17585-17592

  •   Request permissions

    The Auger process in multilayer WSe2 crystals

    Y. Li, J. Shi, H. Chen, R. Wang, Y. Mi, C. Zhang, W. Du, S. Zhang, Z. Liu, Q. Zhang, X. Qiu, H. Xu, W. Liu, Y. Liu and X. Liu, Nanoscale, 2018, 10, 17585
    DOI: 10.1039/C8NR02567C

Search articles by author

Spotlight

Advertisements