Issue 20, 2018

Chemically non-perturbing SERS detection of a catalytic reaction with black silicon

Abstract

All-dielectric resonant micro- and nano-structures made of high-index dielectrics have recently emerged as a promising surface-enhanced Raman scattering (SERS) platform which can complement or potentially replace the metal-based counterparts in routine sensing measurements. These unique structures combine the highly-tunable optical response and high field enhancement with the non-invasiveness, i.e. chemically non-perturbing the analyte, simple chemical modification and recyclability. Meanwhile, commercially competitive fabrication technologies for mass production of such structures are still missing. Here, we attest a chemically inert black silicon (b-Si) substrate consisting of randomly-arranged spiky Mie resonators for a true non-invasive (chemically non-perturbing) SERS identification of the molecular fingerprints at low concentrations. Based on the comparative in situ SERS tracking of the para-aminothiophenol (PATP)-to-4,4′-dimercaptoazobenzene (DMAB) catalytic conversion on the bare and metal-coated b-Si, we justify the applicability of the metal-free b-Si for ultra-sensitive non-invasive SERS detection at a concentration level as low as 10−6 M. We performed supporting finite-difference time-domain (FDTD) calculations to reveal the electromagnetic enhancement provided by an isolated spiky Si resonator in the visible spectral range. Additional comparative SERS studies of the PATP-to-DMAB conversion performed with a chemically active bare black copper oxide (b-CuO) substrate as well as SERS detection of the slow daylight-driven PATP-to-DMAB catalytic conversion in the aqueous methanol solution loaded with colloidal silver nanoparticles (Ag NPs) confirm the non-invasive SERS performance of the all-dielectric crystalline b-Si substrate. A proposed SERS substrate can be fabricated using the easy-to-implement scalable technology of plasma etching amenable on substrate areas over 10 × 10 cm2 making such inexpensive all-dielectric substrates promising for routine SERS applications, where the non-invasiveness is of high importance.

Graphical abstract: Chemically non-perturbing SERS detection of a catalytic reaction with black silicon

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2018
Accepted
13 Apr 2018
First published
17 Apr 2018

Nanoscale, 2018,10, 9780-9787

Chemically non-perturbing SERS detection of a catalytic reaction with black silicon

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. P. Linklater, A. Balčytis, E. Ivanova and S. Juodkazis, Nanoscale, 2018, 10, 9780 DOI: 10.1039/C8NR02123F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements